ЭЛЕКТРОНИКА В АВТОМОБИЛЕ

Все примененные резисторы, кроме R32



Обозначение на схеме (рис. 7)
Рекомендован­ный тип прибора
Возможная замена
Предельные экв­плуатацногеные данные


VI, V5, V6,
V9 — Vll, V20
КТ315В
КТ342А
КТ342А(Б,В), КТ645А, КТ315А(Б,Г,Ж), КТ340А(Б,В,Г,Д)
UKЭ
= 15 В Iк=50 мА
V12, V13, V21, V29
КТ646А
КТ608А(Б), КТ630А(Б,В,Г,Д,Е), КТ815В(Г)
UКэ=60В Iк=400 мА
V37
КУ202М
КУ202Н; Т 10 — 25 кл. 5 и выше
(УА=400 В Iа=10 А
V2 — V4,
V7, V8, VI2,
V17 — V19
КД2О9А
Д223А(Б,В), Д219, Д220, Д220А
UO6p = 50 В Iпр — 50 мА
V15, V16,
V24 — V26, V28, V31
КД209А
КД209Б(В);
КД105Б(В,Г),
КД208А
Uoбp = 100 В Iпр = 300 мА
V33
КД209В
КД105Г, КД202Р
(7овр = 600 В Iпр = 300 мА
V23
А0У103А
А0У103В
 —

Примечание. Uv — напряжение коллектор — эмиттер; IK — ток коллектора; IA — КЭ гок в открытом состоянии; Uo6p — обратное напряжение; Iпр — прямой ток.
Все примененные резисторы, кроме R32 и R50, — типа МЛТ; терморезисто-ры R27, R28 — типа СТЗ-17. Резистор R32 выполнен в виде спирали из ман­ганинового провода диаметром 1,0 мм. Резистор R50 наматывают на корпусе резистора МЛТ-0,5 любого сопротивления манганиновым проводом ПЭШОМ ди­аметром 0,25 мм.
Конденсаторы С1, С2, СЗ, 05, С6, СП — типа КМ-6А, С13 — КМ-4, С1й — МБМ с рабочим напряжением 160 В; электролитические конденсаторы типа К53-1А 16 В. Накопительный конденсатор С14 состоит из двух конденсаторов МБМ 0,5 мкФ, 500 В, соединенных параллельно. Могут быть применены также конденсаторы других типов с соответствующими рабочими напряжениями. Хо­рошие результаты дает применение конденсатора типа МБГЧ 1,0 мкФ, 500 В в качестве накопительного.
Данные трансформаторов Tl, T2 и дросселя L1 приведены в табл. I.
Коммутирующий тиристор V37 перед установкой в блок должен быть про» верен по току утечки. Пригодны лишь те экземпляры, у которых ток утечки при напряжении 400 В не превышает 120 мкА.
В табл. 2 приведены возможные варианты замены полупроводниковых приборов.


При отсутствии оптрона V23 его можно заменить транзистором типа р-n-р, рассчитанным на напряжение не менее 50 В и ток в импульсе не менее 50 мА, например КТ208М или КТ208Л. В этом случае схему устройства стабилизации изменяют, как показано на рис. 7. Точки 1, 3, 4 схемы рис. 7,а соответству­ют точкам 1, 3, 4, схемы рис. 7,6. При этом дроссель L1 и конденсатор С13 ис­ключают, и точка 2 схемы рис. 7,а остается свободной.
Однако следует иметь в виду, что при замене оптрона транзистором по­мехоустойчивость блока ухудшается до 50 — 60 В в зависимости от типа и конкретного экземпляра примененного транзистора. Хорошие результаты дает применение транзисторов типа МП104 или МП114, некоторые экземпляры ко­торых обеспечивают помехоустойчивость до 80 В. При замене оптрона тран­зистором для повышения помехоустойчивости блока, точнее для снижения уровня помех на его выводах, параллельно конденсатору С15 подключают электролитический конденсатор емкостью 20 — 50 мкФ на напряжение не ме­нее 50 В, который вместе с индуктивностью подводящих проводов питания образует фильтр нижних частот.
При отсутствии кремниевых транзисторов типа КТ818Г и КТ814Г (V30, V32) их можно заменить германиевыми типа П210А, П210Ш (V32) и П215 (V30). При этом схему силового транзисторного ключа изменяют, как пока­зано на рис. 7,в.
Налаживание. Если блок собран правильно из заведомо исправных дета­лей, то налаживание его заключается лишь в регулировке напряжения на на­копительном конденсаторе, которое должно находиться в пределах 350 — 360 В. Регулировку ведут подбором сопротивления резистора R32. Сначала его уста­навливают максимальным (0,3 Ом), а затем уменьшают до тех пор, пока на­пряжение на накопительном конденсаторе не возрастет до заданного значе­ния. При этом следует иметь в виду, что для нормальной работы блока не­обходимо, чтобы транзистор V21 открывался (Т5, рис. 8) после того, как ток в обмотке wl трансформатора Т1 достигнет заданного значения IР (t2, рис. 8). В противном случае ток в обмотке wl будет прекращаться в момент откры­вания транзистора V21, не достигнув заданного значения. Устройство стабили-


зации при этом участвовать в работе блока не будет, и напряжение на нако­пительном конденсаторе нельзя будет отрегулировать с помощью резистора R32. Ранее было отмечено, что транзистор V21 открывается примерно через 0,4 мс после замыкания контактов прерывателя (ts, рис. 8). Поэтому, если вре­мя нарастания тока в обмотке wl до значения Iр
обозначить т (рис. 8), а время разомкнутого состояния контактов прерывателя ti, to условие нормаль­ной работы блока можно записать так:

Однако с увеличением частоты искрообразования F время разомкнутого со­стояния контактов Ti уменьшается: T1=l/(2F). Время же нарастания тока % остается постоянным. Оно зависит лишь от величины немагнитного зазора в трансформаторе и от напряжения питания. При увеличении последнего оно уменьшается.
Следовательно, для того чтобы блок нормально работал до частоты 200 Гц (6000 об/мин четырехтактного четырехцилиндрового двигателя) значение т не должно превышать

Поэтому при налаживании блока желательно с помощью осциллографа, подключив его параллельно резистору R32, измерить время т и, изменяя ве­личину немагнитного зазора в магнитопроводе трансформатора Т1, добиться, чтобы при напряжении питания 14 В (именно такое напряжение бывает в ис­правной бортовой сети автомобиля при работе двигателя на средних и боль­ших частотах) соблюдалось условие т<2,9 мс.
Если же это условие не выполняется, то напряжение на накопительном конденсаторе начнет плавно уменьшаться после достижения определенной ча­стоты искрообразования при дальнейшем ее увеличении. В остальном блок будет работать нормально.
Значение граничной частоты FTV, Гц, после которой напряжение начинает уменьшаться при скважности работы прерывателя, равной 2, можно опреде­лить по формуле:

Регулировку блока осуществляют с подключенной катушкой зажигания и прерывателем при напряжении питания 13 — 14 В и частоте искрообразования 50 — 100 Гц в режиме однократного искрообразования (вывод РСт к источни­ку питания сначала не подключают).


В качестве источника питания следует использовать стартерный аккумуля­тор или стабилизированный источник питания, рассчитанный на ток не менее 5 А, Вместо прерывателя можно использовать электронное реле, рассчитанное на ток не менее 150 мА, или поляризованное электромагнитное реле, напри­мер типа РП-4, обмотку которого подсоединяют к звуковому генератору. Об­мотку реле можно включить в сеть переменного тока 127 или 220 В, 50 Гц через понижающий трансформатор или гасящее сопротивление. Контакты ре­ле включают вместо контактов прерывателя. Конденсатор параллельно коя-таксам можно не подключать.
Перед началом регулировки блока необходимо проверить с помощью ос­циллографа работу прерывателя или устройства, его заменяющего, и добиться, чтобы скважность его работы была примерно 2.
Напряжение на накопительном конденсаторе нельзя измерять обычным вольтметром. Надо пользоваться осциллографом (Cl-19, Cl-49, C1-83 и т. д.) или импульсным вольтметром, например ИЧ-3. Если их нет, можно произво­дить измерение по схеме рис. 12. При этом вольтметр постоянного тока PV должен быть на напряжение не менее 400 В с током потребления не более 50 мкА.
Для облегчения поиска неисправностей на схеме рис. 7 указаны значения напряжений в характерных точках ис правного блока. Они измерены отно­сительно корпуса блока вольтоммет-ром типа ТТ-3 с внутренним сопро­тивлением 10 кОм/В и шкалами 1, 3, 10, 30 В при напряжении питания 12 В после размыкания контактов прерывателя. При включении питания контакты должны быть замкнуты, а перед измерением их следует разом­кнуть и оставить разомкнутыми. Проверку работы блока в режиме трехкратного искрообразования произ­водят с помощью осциллографа. Его подключают (на пределе 500 В) парал­лельно первичной обмотке катушки зажигания. Частоту искрообразования уста­навливают в пределах 20 — 30 Гц. При работе в режиме однократного искро­образования на экране осциллографа видны импульсы, показанные на рис. 9 (Мкз), частота следования которых равна частоте искрообразования или, что то же самое, частоте размыкания контактов прерывателя. При подаче же плю­са питания на вывод РСт количество импульсов должно увеличиться в трч раза, причем импульсы должны следовать пачками по три импульса с той же частотой следования пачек. Эту же проверку можно произвести с помощью электронного тахометра, описанного ниже. При подаче питания на вывод. РСт блока частота по шкале тахометра должна увеличиться в три раза.



Рис. 12. Схема измерения напряжения на накопительном конденсаторе
Установка на автомобиле. На автомобиле блок устанавливают в подкапот­ном пространстве и подключают по схеме рис. 7, где сплошными линиями по­казано подключение к катушке зажигания с добавочным резистором (автомо­били «Волга», «Москвич», «Запорожец»), а пунктирными — к катушке зажига­ния без добавочного резистора (автомобили «Жигули», «Нива»). На автомо­билях «Жигули» ВАЗ 2103, 2106, 2107, «Нива», имеющих тахометр, его про­вод (коричневый) должен остаться подключенным к выводу 1 катушки за­жигания. Коричневый провод от блока экономайзера принудительного холо­стого хода (ЭПХХ) также остается на этом выводе.
Температура в месте установки блока не должна превышать +60° С. Штатный конденсатор должен остаться подключенным к выводу прерывате­ля, в противном случа нельзя будет осуществить переход к классической си­стеме. Электронная же система одинаково работает как с конденсатором, так и без него.
Контакты прерывателя при установке блока следует дополнительно зачи­стить. Дело в том, что при установке блока ток через контакты уменьшается с нескольких ампер до сотен миллиампер, и если контакты перед этим долго работали в классической системе и сильно обгорели, то для малого тока элек­тронной системы они могут представлять очень большое сопротивление и элек­тронная система работать не будет. В дальнейшем же срок службы контактов будет определяться лишь механическим износом.
Зазор между контактами прерывателя при установке блока следует оста­вить в пределах нормы, указанной заводом-изготовителем автомобиля. Это связано с обеспечением возможности быстрого перехода с электронной систе­мы на классическую. При работе же с электронной системой величина зазора в прерывателе на интенсивность искрообразования не влияет. При изменении зазора изменяется лишь установка момента зажигания.

Рис. 13. Упрощенная часть схемы электронного блока
Катушка зажигания может быть любого типа от классической системы. Катушки от транзисторных систем применять нельзя.


Зазор в свечах при установке электронного блока следует увеличить на 30 — 50% относительно рекомендуемого заводом-изготовителем автомобиля. Это обеспечит более полное сгорание топлива и связанные с этим увеличение мощ­ности и экономичности двигателя, а также снижение токсичности отработав­ших газов. В случае же аварийного перехода обратно к классической системе увеличенный зазор в свечах не помешает доехать до гаража.
Некоторые упрощения. Если режим трехкратного искрообразозания может быть заменен режимом многократного искрообразования или если этот режим вообще не нужен, схема электронного блока (рис. 7) может быть существен­но упрощена.
Для получения режима многократного искрообразования вместо трехкратно­го из схемы рис. 7 исключают триггеры на транзисторах VI, V5, V6, V9, два транзисторных ключа V10, VII, диоды V15, V16, резисторы R36 — R41 и кон­денсаторы С6 — С8. Всего из схемы исключают 40 элементов. Измененная часть схемы показана на рис. 13, причем обозначения элементов сохранены в соот­ветствии со схемой рис. 7.

Рис. 14. Доработка ротора распределителя для режима многократного искрообразо­вания
Выше был отмечен существенный недостаток режима многократного искро­образования, заключающийся в преждевременном возникновении искровых раз­рядов («обратных ударов») в следующем по ходу распределителя цилиндре при запуске двигателя. Эффективным способом борьбы с этим явлением может быть доработка ротора стандартного распредели­теля. Из латуни толщиной 0,8 — 1,2 мм вы­резают часть кольца по диаметру вращения бокового электрода ротора с угловой дли­ной 50 — 60° и радиальной шириной 5 — 10 мм и припаивают к боковому электроду рото­ра, как показано на рис, 14. Благодаря «хвосту», образованному частью кольца, расстояние между боковым электродом ра­бочего цилиндра крышки распределителя и боковым электродом ротора оказывается меньше, чем до следующего по ходу вра­щения ротора бокового электрода крышки, вплоть до поворота ротора на 50 — 60, ког­да контакты прерывателя уже замыкаются, В результате искра попадает всегда в ра­бочий цилиндр и обратные удары не возни­кают. Если режим многократного искрообразования вообще не нужен, например, если автомобиль эксплуатируют в районах с умеренным или теплым климатом, то из устройства исключают транзисторы V13, V14, резисторы R16 — R20, кон­денсатор С4, диод VI2 и обмотку w2 трансформатора Т1.


На рис. 15 приведена электрическая принципиальная схема еще одного ва­рианта упрощенной конденсаторной системы зажигания с импульсным накопле­нием энергии и однократным искрообразованием при запуске двигателя. Основ­ное отличие этой схемы от схемы рис. 7 состоит в отсутствии трансформатора управления (Т2 на рис. 7). Вместо него у трансформатора Т1 имеется специаль­ная обмотка w3 управления тиристором VI8.
Кроме того, обмотка w3 нагружена резистором R22, который устраняет па­разитные колебания, возникающие в обмотках трансформатора в момент запи­рания диода Vli6 после окончания заряда накопительного конденсатора С4. Без этого резистора тиристор V18 будет включаться не в момент размыкания кон­тактов прерывателя, а в момент окончания заряда накопительного конденсатора. В остальном схема рис. 15 аналогична схеме рис. 7.
При необходимости схема рис. 15 может быть дополнена устройством пе­реключения с электронной системы на классическую, аналогичным устройству, показанному на рис. 7 (разъемы XI — ХЗ). Все рекомендации относительно кон­струкции блока, возможной замены элементов, а также налаживания, данные относительно схемы рис. 7 в этом случае остаются в силе. Электролитический конденсатор Сб, предназначенный для подавления помех по цепи питания, дол­жен быть рассчитан на напряжение не менее 50 В.

Рис. 15. Электрическая схема упрощенной конденсаторной системы зажигания с однократным искрообразованием при за­пуске двигателя.

Рис. 16. Электрическая схема упрощенной конденсаторной системы зажигания с многократным ценообразованием при за­пуске двигателя
На рис. 16 приведена электрическая принципиальная схема другого вариан­та упрощенной конденсаторной системы зажигания с импульсным накоплением энергии и режимом многократного новообразования при запуске двигателя.
Особенностью этой схемы является наличие отдельного трансформатора уп­равления Т2 и отсутствие каскада антидребезга. Выключение тиристора VI про­исходит при замыкании контактов прерывателя. Дребезг контактов при этом на работу системы не влияет, так как трансформатор Т1 не имеет связи с уп­равляющим электродом коммутирующего тиристора V14, а постоянная временя обмотки wl трансформатора Т2 выбрана достаточно большой, и за время дре­безга контактов паразитный импульс во вторичной обмотке не возникает.


К моменту размыкания контактов прерывателя ток в обмотке wl трансфор­матора Т2 достигает установившегося значения, определяемого сопротивлениями резисторов Rl — R4 (при напряжении питания 12 В примерно 230 мА). При этом в магнитном поле трансформатора Т2 накапливается энергия, достаточная для включения тиристора V14 в момент размыкания контактов прерывателя.
Диод VI0 имеет двойное назначение. Во-первых, он ограничивает напряже­ние на обмотке wl трансформатора Т2 в момент замыкания контактов преры­вателя на уровне 0,65 — 0,7i5 В, что увеличивает время нарастания тока в об­мотке в 2 — 3 раза (с 0,1 мс без диода до 0,2 — 0,3 мс с диодом) и позволяет эффективно бороться с влиянием дребезга контактов прерывателя, а во-вторых, ограничивает амплитуду паразитного отрицательного импульса в обмотке w2 на уровне примерно 0,36 В.
Трансформатор Т2, а также остальные элементы схемы рис. 16 применены те же, что и в схеме рис. 7, за исключением транзисторов VIS, V17, которые в данном случае более высоковольтные (рассчитанные на напряжение 120 В). Это связано с тем, что в момент размыкания контактов прерывателя в обмотке wl трансформатора Т2 возникает кратковременный положительный импульс значи­тельной амплитуды, который прикладывается между коллектором транзистора V15 и эмиттером транзистора V17.
При установке блока электронного зажигания, собранного по схеме рис. 16 на автомобиле, штатный конденсатор С должен быть обязательно отсоединен от контактов прерывателя. В противном случае этот конденсатор шунтирует трансформатор Т2, вследствие чего амплитуда импульса, поступающего к уп­равляющему электроду тиристора VI4 в момент размыкания контактов преры­вателя уменьшается, и тиристор может не переключиться. При этом напряже­ние на накопительном конденсаторе начнет возрастать, и элементы блока (V8, V9, СЗ и др.) могут выйти из строя.
Приставка к электронным блокам конденсаторной системы зажигания
с импульсным накоплением энергии для увеличения длительности искрового разряда


Длительность искрового разряда в конденсаторных системах зажига­ния значительно меньше, чем в классической и транзисторных системах. Соот­ветственно меньше и энергия искрового разряда, выделяемая в свече зажига­ния. Однако в подавляющем большинстве случаев длительности искрового раз­ряда, обеспечиваемой конденсаторными системами зажигания, вполне достаточно для нормальной работы двигателя. Вместе с тем, если двигатель по каким-либо причинам работает на переобогащенной смеси, например вследствие неисправности карбюратора или при запуске холодного двигателя при низких температурах, увеличение энергии и длительности искрового разряда может оказаться полезным.
Предлагаемая приставка к электронным блокам, описанным в предыдущем разделе, обеспечивает увеличение энергии и длительности искрового разряда в свече зажигания в 2 — 3 раза. Причем все преимущества, присущие конденса­торным системам зажигания, а именно крутой фронт высокого напряжения и малая чувствительность к шунтированию вторичной цепи, остаются в силе. При­ставка может также работать с промышленными блоками конденсаторной сис­темы зажигания с импульсным накоплением энергии, такими как «Искра-1», «Искра-2», «Искра-3», ПАЗ-2 и т. д. [5].
Принцип работы приставки состоит в том, что во время искрового разряда, когда напряжение на первичной обмотке катушки зажигания становится близ­ким к нулю, а гок максимальным (t2, рис. 9), первичная обмотка катушки за­жигания подключается непосредственно к источнику питания — аккумулятору, что замедляет процесс затухания тока в обмотке и увеличивает длительность и энергию искрового разряда.
Принципиальная электрическая схема приставки с цепями подключения к системе зажигания приведена на рис. 17 (электронный блок ЭБ конденсаторной системы зажигания выполнен по схеме рис. 7).
Приставка состоит из регулируемого .заторможенного мультивибратора на транзисторах V3, V4, электронного ключа на транзисторах V5 — V8, защитных диода V9 и стабилитрона VI0.


Приставка работает следующим образом. После включения питания затор­моженный мультивибратор устанавливается в основное устойчивое состояние, когда транзистор V3 закрыт, a V4 открыт по цепи R7, R8. При этом транзис­тор V5 тоже открыт, а транзисторы V6, V7, V8 закрыты.. Конденсатор С4 за­ряжается через резистор R6 и переходы база — эмиттер транзисторов V4, V5 почти до полного напряжения питания.
В момент новообразования на выводе 3 электронного блока появляется положительный импульс (ti, рис. 9) с амплитудой около 350 В, который через делитель напряжения на резисторах Rl, R2, конденсатор С1 и диод VI посту­пает на базу транзистора V3 заторможенного мультивибратора.
Транзистор V3 открывается, подключая заряженный конденсатор С4 к пере­ходу база — эмиттер транзистора V4 в запирающей для него полярности. Транзистор V4 запирается. Положительное напряжение с его коллектора через резистор R5 и диод V2 поступает на базу транзистора V3 и удерживает его в открытом состоянии после окончания действия входного импульса, пока тран­зистор V4 закрыт. Последний же будет закрыт до тех пор, пока конденсатор С4 не перезарядится через резисторы R7, R8 и открытый транзистор V3. Время перезаряда конденсатора С4 определяется его емкостью и сопротивлениями ре­зисторов R7, R8.
Одновременно с транзистором V4 закрывается транзистор V5, а транзис­торы V6 — V8 открываются, подключая аккумулятор через диод V9 к первичной обмотке катушки зажигания. Однако во время действия высоковольтного им-пудьса на первичной обмотке катушки зажигания (ti — tz, рис. 9) диод V9 за­крыт и через первичную обмотку катушки зажигания от аккумулятора ток не протекает. Когда же положительное напряжение на первичной обмотке катушка зажигания становится меньше напряжения аккумулятора, диод V9 открываете» и через первичную обмотку катушки зажигания начинает протекать ток непос­редственно от аккумулятора. В свече зажигания продолжается искровой разряд-
Диоды V35, V36 электронного блока, подключенные параллельно первичной-обмотке катушки зажигания, в это время закрыты, так как к первичной обмот­ке катушки зажигания приложено почти полное напряжение аккумулятора а запирающей для диодов V35, V36 полярности.



Рис. 17. Электрическая схема приставки к электронным блокам конденсаторной системы зажигания с импульсным накоп­лением энергии для увеличения энергии и длительности искрового разряда
Примерно через 0,7 — 1,7 мс заканчивается перезаряд конденсатора С4 и-транзистор V4 открывается, что вызывает закрывание транзистора V3, т. е. пе­реход заторможенного мультивибратора в основное устойчивое состояние. Транзисторы V6 — V8 закрываются, и ток через первичною обмотку катушки зажигания прекращается. Возникающий при этом в обмотке отрицательный им­пульс напряжения замыкается через диоды V35, V36 электронного блока, и его амплитуда ограничивается на уровне 1,4 — 1,7 В.
На рис. 18 показаны осциллограммы напряжения UСВ и тока Icв свечи за­жигания в электронном блоке конденсаторной системы при его работе с при­ставкой и без нее. Эти осциллограммы сняты при напряжении питания 14 В,. частоте искрообразования 100 Гц и зазоре в свече зажигания 1 мм.
С приставкой длительность искрового разряда увеличивается с 0,5 мс до 1,0 мс, т. е. в два раза. Соответственно возрастает и энергия искрообразования: с 10 мДж (без приставки) до 20 мДж (с приставкой).
При этом также возрастает и коэффициент полезного действия блока, т. е. увеличивается отношение энергии искрообразования, выделяемой в свече зажи­гания, к потребляемой мощности. Так при правильно выбранной длительности импульса заторможенного мультивибратора ток, потребляемый блоком при работе с приставкой, при частоте искрообразования 100 Гц и напряжении питания 14 В возрастает с 1 до 1,25 А, т. е. потребляемая мощность воз­растает при этом с 14 до 17,5 Вт (на 25%), энергия же искрообразования увеличивается при этом вдвое. При необходимости энергия искрового разряда и его длительность могут быть еще увеличены. Для этого в приставке устанав­ливают стабилитрон VI0, как показано на схеме рис. 17 пунктиром, а диоды V36, V35 и резисторы R34, R35 в электронном блоке отсоединяют.

Рис. 18. Осциллограммы напряжения и тока в свече при работе электронного блока конденсаторной системы зажигания с импульсным накоплением энергииг а — с приставкой, б — без приставки


В этом случае в момент разрыва тока в первичной обмотке катушки зажи­ гания при закрывании транзисторов V6, V7,- V8 в первичной обмотке катушки зажигания возникает отрицательный импульс напряжения, амплитуда которого ограничена напряжением стабилизации стабилитрона V10 на уровне 50 — 60 В. Вследствие этого в свече зажигания возникает второй искровой разряд поло­жительной полярности (рис. 19). Длительность суммарного искрового разряда увеличивается до 2,7 мс, а энергия до 30 мДж.

Рис. 19. Осциллограммы напряжения и тока в свече при работе электронного блока конденсаторной системы зажигания с импульсным накоплением энергии с приставкой со стабилитроном
Остановимся на назначении некоторых элементов приставки. Диод V2 ком­пенсирует падение напряжения на транзисторах V4 и V5, что обеспечивает на­дежное закрывание транзистора V3, когда транзисторы V4 и V5 открыты. Ре­зистор R11 и конденсатор СЗ образуют фильтр низких частот, защищающий за­торможенный мультивибратор от помех бортовой сети автомобиля. С помощью переменного резистора R7 регулируют длительность импульса заторможенного мультивибратора.
Конструкция и детали. Транзисторы V7, V8, диод V9 и стабилитрон V10 должны быть установлены на теплоотводящих радиаторах. Остальные элементы приставки размещают на печатной или монтажной плате с контактными лепест­ками. Конструкция приставки должна обеспечивать защиту элементов и платы от попадания воды, пыли и т. п. Ось переменного резистора R7 выводят под шлиц.
В приставке применены постоянные резисторы типа МЛТ, переменный ре­зистор — СП5-1а, СП5-2 и т. п. Конденсаторы могут быть любого типа на нап­ряжение не менее 50 В; электролитический конденсатор СЗ на напряжение не менее 25 В с емкостью не менее указанной на схеме.
Транзисторы КТ342А можно заменить на КТ342(В), а также на КТ315 с любым буквенным индексом, транзистор К.Т608А — на КТ608Б, К.Т646А, КТ630А, Б, а транзистор КТ935А — на любой другой транзистор, имеющий допустимое напряжение коллектор — эмиттер не менее 80 В и ток коллектора не менее 5 А. Важным параметром для этого транзистора является также напряжение насы­щения коллектор — эмиттер. Чем оно меньше, тем лучше, тем будет больше длительность искрового разряда и его энергия.


Диоды КД209А (VI, V2) можно заменить любыми маломощными кремние­ выми диодами, рассчитанными на ток не менее 10 мА с любым обратным нап­ряжением, например КД103А, Д223, Д219 и т. п.; диод ВД202Р (V9) — лю­бым мощным кремниевым диодом, рассчитанным на ток не менее 5А и обратное напряжение не менее 400 В.
При замене стабилитрона Д817А (V10) следует иметь в виду, что напря­жение стабилизации заменяющего стабилитрона (с учетом разброса) должно быть меньше, чем допустимое напряжение коллектор — эмиттер транзисторов V7, V8. Допустимая мощность, рассеиваемая стабилитроном, должна быть не менее 5 Вт, а максимальный ток стабилизации не менее 90 мА.

Рис. 20. Схема дели­теля напряжения для подключения осцилло­графа к свече зажига­ния
Налаживание приставки я проверку правильности ее работы производят с помощью осциллографа и специального делителя напряжения, собранного по схеме рис. 20 на пластине из оргстекла. Налажива­ние приставки лучше производить непосредственно на автомобиле, так как параметры искрового проме­жутка свечи зажигания существенно влияют на дли­тельность искрового разряда.
Первоначально движок переменного резистора R7 устанавливают в нижнее по схеме положение, чтобы длительность импульса мультивибратора была мак­симальной. Затем запускают двигатель и наблюдают за экраном осциллографа, где должна быть видна осциллограмма напряжения, показанная на рис. 18 (имеется в виду, что приставка работает без стаби­литрона V10 и диоды V35, V36 в электронном блоке подсоединены).
Плавно вращая ось переменного резистора R7, уменьшают длительность импульса мультивибратора до тех пор, пока длительность искрового разряда на экране осциллографа не начнет уменьшаться, после чего слегка поворачивают ось резистора в обрат­ную сторону до тех пор, пока не восстановится пер­воначальная (максимальная) длительность искрового разряда. На этом налаживание заканчивается. Смысл этой операции заключается в том, чтобы исключить бесполезное протекание тока через первичную обмотку катушки зажигания после оконча­ния искрового разряда в свече и вместе с тем получить искровой разряд мак­симальной энергии и длительности.


Если в приставке установлен стабилитрон, а диоды V35, V36 в электрон­ ном блоке отсоединены, на экране осциллографа должна наблюдаться осциллог­рамма напряжения, показанная на рис. 19. Вращая ось переменного резистора R7, добиваются, чтобы положительная часть искрового разряда сразу же, без паузы, следовала за отрицательной, как это показано на рис. 19.
При чрезмерно большой длительности импульса от мультивибратора меж­ду отрицательной и положительной частями искрового разряда появится пау­за, а при чрезмерном уменьшении длительности импульса уменьшится длитель­ность отрицательной части искрового разряда.
Конденсаторная система зажигания с непрерывным накоплением энергии
Предлагаемая система зажигания отличается от описанных в преды­дущем разделе тем, что в ней накопительный конденсатор заряжается непре­рывно, в связи с чем утечки элементов вторичной цепи на работу системы не влияют. Система нормально работает при наличии в бортовой сети импульсных помех с амплитудой до 80 В. Режим многократного искрообразования в сис­теме не предусмотрен.
Система обеспечивает получение стабилизированного напряжения на пер­вичной обмотке катушки зажигания 360±10 В при изменении напряжения питания от 6,5 до 15 В и температуры от — 40 до +70° С. Ток, потребляемый системой, изменяется линейно от 0,4 А при остановленном двигателе до 1,8 А при 6000 об/мин четырехтактного четырехцилиндрового двигателя. Длительность искрового разряда 0,3 мс, а его энергия не менее 4 мДж.
К недостаткам системы можно отнести малые длительность и энергию иск­рового разряда (0,3 мс и 4 мДж против 0,4 — 0,5 мс и 10 мДж в ранее описан­ных системах), а также отсутствие режима многократного искрообразования. Однако простота схемы, значительно меньшее количество элементов, а также нечувствительность к утечкам в элементах вторичной цепи и простота регули­ровки в ряде случаев делают эту систему предпочтительной.
Электрическая принципиальная схема системы приведена на рис. 21.


Система состоит из электронного блока, устройства переключения с элект­ронного зажигания на обычное, включающее в себя разъемы XI — ХЗ, а также штатных элементов — катушки зажигания КЗ, выключателя зажигания ВЗ, ак­кумулятора GB, выключателя стартера ВСт и прерывателя Пр.
Электронный блок имеет следующие основные узлы и элементы:
однотактный преобразователь напряжения на транзисторе V4 и трансфор­маторе Т1;
устройство стабилизации, состоящее из стабилитрона VII и релейного уси­лителя постоянного тока на транзисторах V12, V13, V14, VI;
накопительный конденсатор С4;
устройство коммутации, состоящее из тиристора V8, трансформатора уп­равления Т2, резисторов R5, R6, конденсатора СЗ и диода V10;
разрядный диод V9.

Рис. 21. Электрическая схема конденсаторной системы зажигания с непрерывным накоплением энергии
Система работает следующим образом. Допустим, что контакты преры­вателя Пр в момент включения питания разомкнуты. После включения пи­тания начинает работать преобразователь напряжения. Напряжение на нако­пительном конденсаторе С4 в этот момент еще отсутствует, поэтому стабилитрон VII и транзистор V12 закрыты, а транзисторы V13, V14 открыты. Открытый транзистор V14 шунтирует цепь базы транзистора VI, вследствие чего последний закрыт и на работу преобразователя не влияет.
Транзистор V4 преобразователя первоначально открывается через рези­стор R1. При этом почти полное напряжение питания прикладывается к об­мотке wl трансформатора Т1 и через нее начинает протекать линейно-нарастаю­щий ток (t1
на рис. 22). В остальных обмотках трансформатора при этом инду­цируются напряжения. Отрицательное напряжение с начала обмотки w2 че­рез диод V6 и резистор R2 поступает на базу транзистора V4 и переводит его в состояние глубокого насыщения.

Рис. 22. Временные диаграммы работы однотактного стабилизированного пре« образователя напряжения конденсаторной системы зажигания с импульсным накоплением энергии
Ток I1 в обмотке wl нарастает до тех пор, пока обеспечивается насыщение транзистора V4, т. е. до тех пор, пока соблюдается условие



где Ikv4 и IBV4
— токи коллектора и базы транзистора V4 соответственно,
h21 э нас — коэффициент передачи тока этого транзистора в режиме насыще­ния (обычно h21Энас
= 5 — 10).
При достижении током h значения IP = IBV4
h2i3
Hac, которое будем назы­вать током разрыва, транзистор V4 начинает закрываться. Напряжение на нем увеличивается, а на обмотке wl уменьшается. Вследствие этого напряжение на обмотке w2 тоже уменьшается, способствуя запиранию транзистора V4, который закрывается в течение нескольких микросекунд. Напряжение затем изменяет свой знак. Положительное напряжение с начала обмотки w2 через резисторы R4 и R2 прикладывается к базе транзистора V4 и надежно запирает его. Процесс выключения транзистора V4 длится всего несколько микросекунд, ток через обмотку wl трансформатора Т1 прекращается (Т2, рис. 22), на чем заканчивается прямой ход работы преобразователя. Диод V7 во время прямого хода преобразователя закрыт.
После разрыва тока в обмотке wl трансформатора Т1 начинается обрат­ный ход работы преобразователя. Энергия, накопленная в магнитном поле трансформатора, создает в его обмотках импульсы напряжения противополож­ной полярности. Положительный импульс с обмотки w3 открывает диод V7 и заряжает накопительный конденсатор до напряжения, зависящего от энер­гии, накопленной в магнитном поле трансформатора во время прямого хода, и емкости накопительного конденсатора. Значение этого напряжения можно определить по формуле (6).
После окончания действия импульса обратного хода (t3
на рис. 22) по­ложительное напряжение в обмотках трансформатора Т1 исчезает, транзистор V4 снова открывается и процессы повторяются. Напряжение на накопитель­ном конденсаторе ступенчато возрастает. Длительность импульса обратного хо­да уменьшается по мере увеличения его амплитуды, что связано с постоянст­вом энергии каждого импульса и, следовательно, его вольт-секундной площади.
Когда напряжение на конденсаторе С4 достигает 350 — 360 В (Т4, рис. 22), заданного сопротивлениями резисторов R? — R9 и напряжением стабилизации-стабилитрона VII, последний открывается. Открываются транзисторы VI, V12, а транзисторы V13, V14 закрываются. Положительная обратная связь, осущест­вляемая через резистор R12, ускоряет процесс переключения транзисторов V12 — V14 релейного усилителя и, кроме того, повышает его устойчивость. Конденсатор С5 также повышает устойчивость усилителя.


Открытый транзистор VI через диод V2 шунтирует цепь базы транзисто­ра V4, вследствие чего последний закрывается и преобразователь прекращает работу. Накопительный конденсатор медленно разряжается через резисторы R7 — R9, стабилитрон VII и сопротивления утечек тиристора V8, диодов V7, V9 и собственное сопротивление изоляции. Через некоторое время напряжение на накопительном конденсаторе уменьшается настолько, что стабилитрон VII закрывается. Транзисторы VI и V12 также закрываются, а транзисторы V13, V14 открываются. Преобразователь снова начинает работать (Ts, рис. 22). Пер­вый же импульс обратного хода подзаряжает накопительный конденсатор, на­пряжение на нем увеличивается и снова открывается стабилитрон VII и тран­зисторы VI и V12. Преобразователь опять прекращает свою работу и т. д. Таким образом, средний уровень напряжения на накопительном конденсаторе поддерживается постоянным.
В установившемся режиме амплитуда пульсаций напряжения на накопи­тельном конденсаторе не превышает 10 — 15 В. Эта величина зависит от энер­гии, запасаемой в магнитном поле трансформатора за время прямого хода.
При замыкании контактов прерывателя через резисторы R5, R6 и диод V10 начинает протекать ток. Напряжение на обмотке wl трансформатора Т2 ограничено диодом V10, в связи с чем амплитуда отрицательного импульса на управляющем электроде тиристора V8 в момент замыкания контактов прерывателя не превышает 0,35 В. Ограничение напряжения на обмотке wl, кроме того, обеспечивает увеличение времени нарастания тока в обмотке, что позво­ляет устранить влияние дребезга контактов прерывателя.
К моменту размыкания контактов прерывателя ток в обмотке wl дости­гает установившегося значения, и в магнитопроводе трансформатора Т2 на­каоливается электромагнитная энергия, поэтому в момент размыкания контак­тов прерывателя в обмотках трансформатора возникают импульсы напряже­ния. Положительный импульс с конца обмотки w2 поступает к управляюще­му электроду тиристора V8, вследствие чего последний включается (U, рис. 23).



Рис. 23. Временные диаграммы работы системы зажигания с непрерывным на­коплением энергии в момент искрообразования
Первичная обмотка катушки зажигания подключается к заряженному до напряжения 350 В накопительному конденсатору С4, и напряжение на ней в течение нескольких микросекунд возрастает до 350 В (UK3). Скорость нара­стания вторичного напряжения зависит от параметров катушки зажигания. При применении серийных катушек от классической системы зажигания, например типа БМ7, искра возникает через 3 — 5 мкс после размыкания контактов пре­рывателя (h, рис. 23),
Первичная обмотка катушки зажигания и накопительный конденсатор С4, соединенные между собой через включившийся тиристор, образуют колеба­тельный контур, в котором возникают затухающие колебания. Ток в контуре IКЗ, как видно из рис. 23, отстает от напряжения на 90°. Через четверть пери­ода, в момент Т3, ток в контуре достигает максимального значения, а напря­жение на конденсаторе становится равным нулю и затем меняет свой знак. Как только напряжение на накопительном конденсаторе становится отрица­тельным, открывается диод V7, и через него и обмотку w3 трансформатора Т1 начинает протекать ток Iri, нагружая преобразователь и не давая ему на­чать работу. Через полпериода, в момент tit ток в контуре становится равным иулю и тиристор выключается. Однако благодаря диоду V9 колебательный кон­тур сохраняется. Напряжение ва накопительном конденсаторе в это время {ti, рис. 23) отрицательно, диод V9 открывается, и ток контура протекает те­перь через него.
Еще через полпериода, в момент tb, ток в контуре снова уменьшается до нуля, диод V9 закрывается и колебательный контур разрывается. Первичная обмотка wl катушки зажигания отключается от накопительного конденсато­ра, и искровой разряд в свече прекращается. Однако диод V7 еще в течение примерно 150 мкс остается открытым, пока энергия, накопленная в магнит­ном поле трансформатора Т1, вследствие протекания через обмотку w3 тока IV7 не будет израсходована на подзаряд накопительного конденсатора (k — Т6, рис. 23). Как видно из рис. 23, в момент h, когда диод V9 закрывается и коле­бательный контур разрывается, на накопительном конденсаторе имеется поло­жительное напряжение U1, составляющее примерно 30% первоначального на­пряжения U1. Напряжение U2 определяется энергией, выделяемой в искровом разряде свечи зажигания, которая может быть подсчитана по формуле №и = = (U21-U22)C4/2.


Энергия, выделяемая при искровом разряде, при прочих равных условиях зависит от величины искрового промежутка свечи зажигания. С увеличением искрового промежутка напряжение Uz уменьшается, и, следовательно, энергия, выделяемая в искровом разряде, увеличивается.
Следует отметить, что в описываемой системе зажигания длительность искрового разряда нельзя увеличить путем подключения диодов параллельно первичной обмотке катушки зажигания, как это сделайо в системах с импульс­ным накоплением энергии (диоды V35, V36, рис. 7). Нельзя также подклю­чать ранее описанную приставку для увеличения длительности искрового раз­ряда.
При подключении диодов или приставки напряжение на накопительном конденсаторе во время искрообразования не становится отрицательным, пре­образователь продолжает все время работать, коммутирующий тиристор не выключается и искрообразование прекращается.
Чтобы система могла работать с диодами или приставкой, ее необходимо снабдить дополнительным устройством, например заторможенным мультивибратором, запирающим транзистор V4 преобразователя на время искрового разряда.
Остановимся на назначении некоторых элементов преобразователя.
Диод V2 защищает транзистор VI от напряжения положительной поляр­ности, возникающего в обмотке w2 (на базе транзистора V4) во время обрат­ного хода. Диод V3 компенсирует падение напряжения в диоде V2, что не­обходимо для надежного закрывания транзистора V4 при открывании тран­зистора VI.
Благодаря диоду V6 отрицательная полуволна напряжения с обмотки w2 проходит к базе транзистора V4 почти полностью, а положительная полувол­на ограничивается на допустимом для транзистора V4 уровне делителем R4, R2, R1. Конденсатор С1 при этом устраняет положительный выброс напряже­ния на базе транзистора V4, появляющийся в момент действия переднего фронта импульса обратного хода вследствие малого быстродействия диода V6.
Стабилитрон V5 и цепь R3C2 ограничивают амплитуду выброса напряже­ния на коллекторе транзистора V4 при его закрывании. Этот импульс возни» кает потому, что время переключения транзистора типа КТ837 значительно меньше, чем постоянная времени трансформатора Т1, вследствие чего во вре­мя действия переднего фронта импульса обратного хода (в течение несколь-ких микросекунд) обмотка w3 с диодом V7 и конденсатором С4 как бы еще не подключена. Без цепи R3C2 амплитуда импульса может достигать 70 — 80 В, и ток через стабилитрон V5 будет превышать допустимое значение.


Резисторы R5, R6 ограничивают ток через обмотку wl и вместе с конден­сатором С1 образуют фильтр нижних частот, обеспечивающий необходимую помехоустойчивость системы зажигания.
Конструкция и детали. Все рекомендации по конструкции электронного блока системы зажигания, описанной в предыдущем разделе, остаются в силе и в данном случае. Разъем XI устанавливают на корпусе блока. Из разъема Х2 выводят жгут проводов различной расцветки для подключения к соответ­ствующим точкам схемы на автомобиле. Разъем ХЗ со стороны монтажа за­крывают цилиндрической заглушкой, а со стороны штырей — крышкой с це­почкой (чтобы крышка не потерялась) и закрепляют на жгуте проводов разъ­ема Х2.
На радиаторах охлаждения должны быть установлены транзистор V4, стабилитрон V5, диоды V3 и V9, тиристор V8. Остальные элементы распола­гают на печатной плате.
В конденсаторной системе зажигания применены постоянные резисторы ти­па МЛТ, переменный резистор R8 — СПб-1а, СП5-2 (от качества этого рези­стора, от его временной стабильности зависит временная стабильность вторич­ного напряжения блока).
Конденсаторы С1, С2, С5 могут быть выбраны любого типа, но обязатель­но неэлектролитические, на напряжение не менее 50 В, конденсатор С4 типов МБГЧ, МБГО, МБГП на напряжение не менее 500 В (можно также приме­нить два конденсатора типа МБМ по 0,5 мкФ на 500 В), электролитические конденсаторы СЗ и С6 типа К50-20, К53, К52 на напряжение не менее 25 В.
Трансформатор Т1 имеет магнитопровод Ш16Х16 из стали ЭЗЗО, Э340, Э44, который собирают встык с немагнитным зазором 0,15 — 0,25 мм (пресс-шпановая прокладка). Обмотка wl имеет 16 витков провода ПЗВ-2 диамет­ром 0,9 — 1,2 мм, обмотка w2 — 11 витков, a w3 — 290 витков проводом ПЭВ-2 диаметром 0,35 — 0,5 мм. Трансформатор должен быть хорошо стянут специаль-нои обоймой. В противном случае при работе системы он будет создавать сильный шум.
Для трансформатора Т1 может быть применен магнитопровод с другим сшчением, например от блока с импульсным накоплением энергии. В этом слу­чав числа витков обмоток изменяют обратно пропорционально корню квадрат­дому из отношения сечений магннтопроводов.
Трансформатор Т2 наматывается на тороидальном магнитопроводе ОЛ12Х Х20Х6.5 из стали ЭЗЗО, Э340. Обмотка wl имеет 150 витков провода ПЭВ-2 диаметром 0,33 мм, а обмотка w2 — 75 витков того же провода диаметром 0,15 мм.
При замене диодов и транзисторов следует руководствоваться режимами их работы, приведенными в табл. 3 и 4. В этих же таблицах указаны некото­рые варианты возможной замены диодов и транзисторов. При замене транзи­стора V4 КТ837В на КТ837А(Б) работа блока ухудшается. Вследствие мало­го коэффициента передачи тока заменяющих транзисторов уменьшается ток разрыва (Iр, см. рис. 22) и увеличивается время заряда накопительного кон­денсатора. Быстродействие системы снижается и, кроме того, увеличивается ее минимальное рабочее напряжение. Следует также иметь в виду, что допусти­мое обратное напряжение база — эмиттер у заменяющего V4 транзистора дол­жно быть не менее 15 В.

Содержание раздела